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Quantization of K~ihler manifolds I: 
geometric interpretation of Berezin's quantization 
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Abstract. We give a geome~'c interpretation of  Berezin's symbolic calculus on 
K£thler manifolds in the framework o f  geomet~c quantization. Berezin's covariant 
symbols are defined in terms of  coherent states and we study a function 0 on the 
manifOld which is the central object of the theory. When this function is constant 
Berezin 's qnantization rule coincides with the prescription o f  geometric quantization 
for the quantizable functions. It is defined on a larger class o f  functions. We show 
in the compact homogeneous case how to extend Berezin 's procedure to a dense sob- 
space of  the algebra of  smooth functions. 

0. INTRODUCTION 

The aim of this paper is to presem Berezin's quantization of K~tler manifolds [2] in 

a global geometric setting, to compare this procedure with the usual geometric quantiza- 

tion of Kostant and Souriau [4, 8] and to investigate the size of  the space of quantizable 

functions. This paper is a natural extensions of the work of one of us on coherent states 

[7]. 

When formulated globally in terms of coherent states, Berezin's construction of co- 

variant symbols of operators appears in terms of sections of the line bundle of  geometric 
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quantization. The consideration of a system of coherent states leads to the definition of a 

function/9 on the K~ihler manifold, which is the central object of the theory. The integral 

of this function is a topological invariant when the line bundle is sufficiently positive. 

A crucial assumption is that /9 reduces to a constant; this is the case when the man- 

ifold and the quantization are homogeneous. It has been observed in [7] that when /9 

is constant, Kodaira's holomorphic embedding in a certain complex projective space 

p l y ( I t )  is symplectic. Furthermore the pull back of the dual of the canonical line bun- 

dle on pJV(¢)  to the manifold is isomorphic to the original quantization bundle. We 

include the proof of this property for the sake of completeness. 

Another very different consequence of the constancy of/9 is that Berezin's quantiza- 

tion rule coincides with the rule of  geometric quantization for the so-called quantizable. 

It generalizes geometric quantization in the sense that it applies to a larger class of func- 

tions. 

Finally we show that when /9 is constant and the manifold is compact (in particular 

for compact homogeneous K~ihler manifolds) Berezin's procedure applies to an algebra 

of  functions which is dense in the algebra of smooth functions. 

We shall study in part II the relations between Berezin's construction and quantization 

by deformation [1, 5]. 

1. G E O M E T R I C  QUANTIZATION [4, 8] 

The geometric quantization of Kostant and Soriau associates a separable Hilbert space 

7~ in a ,maturab> way to the phase space (= symplectic manifold (M,~0)) of some 

classical systems with a finite number of degrees of freedom. It singles out a class £ 

of  smooth real valued functions on M (the so called quantizable functions) and maps 

each element f of  £ onto an operator Qf  (the quantum operator corresponding to 

the classical observable f). We briefly recall this construction as this will give us the 

opportunity to define our notation. 

We shall denote by (M,  to) a smooth ( C  °°) connected, symplectic manifold of 

dimension ra = 2 n. If  ~o : M --~ 1R is a smooth function, the associated vector field 

X ,  is defined by: 

(1.1) i( X~ )w  = d !o. 

The Poisson bracket {~o, ¢} of two smooth functions is: 

(1.2) {~, ¢} = x ~ ¢  = - w ( x ~ , x ~ ) .  

The first clement of the construction is a hermitian complex line bundle 7r : L 

M with a connection V leaving the hermitian structure invariant. If  h denotes the 
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hermitian structure, if s and 8' arc smooth sections of  L and if X is a vector field on 

M, the invariancc condition reads: 

(1.3) X(h (a , s ' ) )  = h ( V x s ,  s') + h(s ,  VxS ' ) .  

We shall assume in all that follows that hermitian products are complex linear in their 

first argument and complex semiqinear in their second argument. The curvature R of 

(L,  V) is the complex valued 2 -form on M such that: 

(I .4) ( V x V y  - V y V  x - V [ x y  1) s = R(X,  Y) a 

where X,  Y are smooth vector fields on M and s is a smooth section of L. The triple 

(L,  V, h) is a prequantization bundle over (M,  to) if: 

iR 
(1.5) - -  = to. 

2~r 

Such a prequantization bundle exists if and only if w has integral periods. Clearly if 

(1.5) is satisfied the curvature form is pure imaginary. 

We shall consider the space of smooth sections 8 of M such that 

to" 
( 1 . 6 )  Ilsll 2 = h ( s , 8 ) k - -  " < o o  

and denote by ~ / (M)  its L 2-completion. 

The second element of the construction is a Hilbert subspace ~ of 7{(M),  the space 

of polarized sections. We shall assume, from now on, that (M,  to) admits a positive 
K~blerpolaHzation F. That is, there exists on M a smooth complex distribution F, 

of complex dimension n such that: 

(i) F I7 ~' = 0; 

(ii) ( F +  F)~ = M~ ¢ (= complexified tangent space at "Q forall  ~ in M; 
t • 

(iii) F is mvolutwe; 

(iv) when extended complex linearly, tolF = 0; 

(v) forall X~O in F,i~,(X,R) > O. 
I f  one defines an almost complex structure J on M, by JIF = - i l IF  and JIP = 

lip , this almost complex structure is integrable and thus there exists a unique complex 

analytic structure on M which induces this J. A positive definite metric g on M is 

defined by: 

(1.7) g(X,  Y )  = to(X, J Y )  X, Y = vector fields on M. 

This metric is hermitian, and as 0o is closed it is a Kiihler metric, i.e. DJ = 0 where 

D is the Levi-Civita connection associated to g. We shall refer to the polarization by 

F or by J, whichever is the most convenient. 
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The line bundle lr : L ---* M has then a natural structure o f  a holomorphic line 

bundle. A section 8 : M ~ L is said to be holomorphic if V x 8  = 0,  for all X 

in F. Let a : U --* L o (= L \  zero section)be a smooth section over the open set 

U of  M;  let s : M ---* L be a smooth section and let ,~ : U ~ ¢ be defined by 

a(x) = a (x )~ (x )  for all x in U. The connection 1-form c~ on L0 is the unique 

1-form such that 

(1.8) V xs (  x) = ( XB)(  x) + (a*o~)z(X)B(x) 

for any x in U, any vector field X on U, any section 8, any U open in M and 

any smooth section cr on U with values in L 0 . I f  one chooses locally a holomorphic 

section a : U ---* L 0 , the pull back of  the connection form, a*c~, is o f  type (1, 0); as 

the curvature form R is o f  type (1, 1), or*or is 0 closed and by the Dolbeault lemma, 

¢r*c~ is the 0-differential o f  a function. As the hermitian structure h o f  L is invariant 

one has: 

(1.9) ¢r*c~ + or*or = d(lnh)  

Hence: 

(1.10) cr*o~ = O(lnh), 

i 
(1.11) to = ~ - b O ( l ~ ) .  

Here we have also written h for the function on U, x ---, h ( a ( x ) ,  or(x)).  Let 7/ be 

the space ofholomorphic sections s of  L such that 118112 < oo (cf. 1.6); it is complete 

[4] and hence a Hilbert space. 

The third element o f  the construction is the class £ of  quantizable classical observ- 

ables. 

Let us first recall that an automorphism ~ of  the hermitian line bundle with connec- 

tion (L,  h, V) is an automorphism of the line bundle L such that 

(i) h ( ~ , ~ )  = h(~,~) V~ E L 
(ii) (~lLo)*Ol = ol ~ = connection l -form on L 0 

We shall denote by ~o thediffeomorphism of  M inducedby ~ (i.e. l ro~  = ~poTr) ; 

it is a symplectic diffcomorphism. Let X be a complete vector field on ( M, to) and let 

opt be the one parametric group of  diffeomorphisms it generates; the group ~t can be 

lifted to a one-parameter group ~t of  automorphisms of  (L ,  h, V) if and only if X is 

the hamiltonian vector field corresponding to a certain function f on M (i.e. X = X I  

and i(Xy)tO = d r ) .  The generator Y of  ~5 t is the vector field 

(1.12) Y(~)  = )~:(~)  + 2~rif(Tr(~))*(~), ~ E Lo, 
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where X /  is the horizontal lift of  X and 

d ~t_2,itl(,(O)~ 
2 ' r i / ( ~ r ( O ) ' ( O  = h '~ t~  ,o- 

The lift of  hamiltonian vector fields determines a linear map 

C°~(M, IR) ~ End F**(L) 

49 

(1.13) f ---* [s---~Qfs= Vx a= 21rifs ] 

It has the property that: 

(1.14) [Q/,Q~] = Q{:,g}, :,g e C**(M,R). 

In order that QI be defined on 7"/ it is necessary that for any holomorphic section 

s, VxQFs = 0 for any X in F. This is equivalent to saying that [ X, X/]  belongs to 

F for any X in F. We thus define ~, the space ofqunntizable functions, as: 

0.15) vx eF}. 

If f and g belong to £, so does their Poisson bracket. 

To summarize, a Kiihler manifold ( M, to, F )  is said to be quantizable if there exists 

over M a hermitian, holomorphic line bundle with connection (b ,  h, V) such that the 

curvature R is related to the K~ihler for to by 

R = - 2  Irito 

A choice of such a line bundle is called a quantization of the K~hler manifold. 

The basic Hilbert space of the theory }/ is the space of holomorphic sections of L 
which are L 2 with respect to the Liouville measure on M. 

The space of quantizable functions, ~, is the set of smooth functions whose cor- 

responding hamiltonian vector field stabilize the antiholomorphic subbundle F of the 

complexified tangent space, (TM) ¢. If f belongs to E the qu~r~tum operator Q / i s  
the linear operator on ~ ,  Q.t = V x / -  21rif. 

REMARK. We have adopted units relative to which the Planck constant "h = 1; to con- 

form with standard usage we should in fact consider 7QI as the quantum operator. 
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EXAMPLE. If  (M,  to) = (1R 2n, ~ d z j  Adl/7.) , the line bundle L = IR 2" x ¢ .  Taking 
j_<n 

z; -- z; + and a r*l ation F Canned by {0,; j _< - ) ,  complex coordinates 

one chooses for the connection form an L 0 : 

~ =  - ~ r E ~ j d z j  + du/u (u = coordinate on ¢ )  
J 

The section G : R 2 '~ --* L0 : (~, Y) -4 ( z, !/; 1) is holomorphic and the function 

h( z, !/) ~ h( ~( ~, 9), G( ~, 7/)) is given by: 

-~r ~ zj~j 

h= hoe i<_,~ h o E !~ 

The space 7t = { f  : 1R 2~ -4 ¢ I holomorphic and such that: 

-~r ~ z~j 
fs2 ( i)'~e ffljdzj A d~j < o<3}. 1 I f ( z )  l 2 

The quantizable functions are of the form 

k,l k 

where &kt = °qk and '1 = ~/- 

2. BEREZIN' S QUANTIZATION AND COHERENT STATES 

We present Berezin's quantization procedure in the same framwork as geometric 

quantization using coherent states; this is a natural extension of [7]. We also show, 

using a local trivialization, how Berezin's original formulation fits with this geometric 

presentation. Berezin's quantization has been developed by several authors (see for ex- 

ample [5]); neither Berezin, nor its successors seem to have considered the function 0 

which plays the crucial rfle both from the point of view of geometry (see theorem 1 of 

§ 3) and from the point of  view of analysis (see proposition 2 and theorem of § 4). 

Let (L,  h, V) be a quantization of the Kiihler manifold (M,  to, F) ;  let s be an 

element of  7~ and let q belong to L 0 with ,r(q) = z. Evaluation of a section 8 at 

x gives a multiple t~(8) of  q and as ~ is holomorphic, l~(s) is a linear continuous 

functional of  6. 
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(2.1) 8(z)  = a(Ir(q)) = lq(s)q 

By Riesz's theorem, there exists an element e~ in ~ such that: 

(2.2) l~(s) = (a, e~) 

where ( , )  is the scalar product in 7(. 
Observe that if c belongs to ¢* : 

(2.3) l~(s) = e-l/~(s); e~ = ~-leq 

The sections e~ will be called the col~rent states. 
Let @ be an automorphism of the quantization bundle (/ , ,  h, V) sucht that the cor- 

responding symplectic diffeomorphism ~o of M preserves the polarization F;  ~o is 
then holomorphic. The automoq~hism @ acts unitarily on ?~; since 

(~s ) (z )  = ¢~s(~o-lz) • E M; s E 7¢ 

V ~ . x @ S = ~ T x S = 0  ~ E F ;  sET~ 

Hence @.8 is holomorphic. 
From this one deduces that: 

(2.4) @.e~ = e ~ o .  

Indeed for any s in ~ : 

$(¢p(X))  = (8 , e~(q ) )@(q)  = (@ o ~ - 1 8 ) ( ¢ p ( Z ) )  = 

= ~((~-~8)(~))  = ~((¢~-~s,eq)q) = (s,~e~)~3(q) 

Equation (2.4) means that the quantum evolution of the coherent states follows the clas- 

sical evolution. 
Consider now a bounded operator A : ~ ~ ~ .  Following Berezin we associate to 

this operator a covariant symbol .~ which is a complex valued function defined on M 
by 

(2.5) /~(:r) = (Aeq, eq) 
11%112 q ~/,o,~r(q) = :r 
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This makes sense because of  (2.3). To obtain a quantization we have to reverse this 

procedure; the class of  quantizable functions f on M is the set E ( L )  of  covariant 

symbols of  bounded operators Q /  on 7¢. 

Each such covariant symbol can be analytically continued to the open dense set V 

in M x M consisting of  points ( z ,V  suchthat  (e¢,eq)¢O (where 7r(q) = :r and 

Ir(q~) = V) holomorphically in z and antiholomorphically in V. The analytic contin- 
uation is given by 

(2.6) .~(z,  V) = (Ae¢,  eq) 
(e¢, eq) " 

The operator A can be recovered from its symbol as follows: 

A s ( z )  = (As,  eq)q = (s, A*eq)q 

h * 
(2.7) = fu ,,,,,>,,A e,,,,>, : ~ ( v ) q  

= fu h,, s, ,), e,,,) ) z ,  z, , ) :  k--. (v)q  

where ~r(q) = z and q E L 0. 

To compare these formulaa with the ones given by Berezin we take a dense open set 

U in M where there exists a holomorphic section s o : U --* L o . Any dement  a in 

7¢, when restricted to U can be expressed 

(2.8) s ( z )  = f ( : r ) % ( z ) ,  :r E U 

where f : U ---* ¢ is holomorphic. Furthermore the map s --o f is an isometry of  

7"/ to a space of  holomorphic functions on U which belong to L 2 , for the measure 

u I~ol 2 ~" 12 -2 = ~- where I% = h ( s o , % ) .  This Hilbert space will be denoted by L u- 

If: 

(2.9) eoo ( z )  ~ f=% 

we can define a map U ~ L~ : x ---* fx- The functions f= are often called coherent 

states but we shall here reserve this terminology for the eq's. 

If  9 belongs to Lu 2 , one has: 

(2.10) 

In particular: 

(2.11) 

g(~) = (9,L). = 9(v)Lfv)l~012(v) (v) 

= k ( z , v )  fz(I/) --- (f,, fz)~, not 
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This function k, which is defined on U x U, is holomorphic in the first argument and 

antiholomorphic in the second; it is known as the reproducing kernel. The property: 

(2.12) g(x) = ftz g(y) k(x, 7/)#(Y) 

justifies the name. In view of the analyticity properties of k, it is uniquely determined 

by its restriction to the diagonal. 

Consider now a bounded operator A on N and define the corresponding operator 

Ao on Z,~ by: 

(2.13) A s  = ( A o f ) S  o s E 7~; s = fs0.on U. 

The analytic continuation of the covariant symbol .4, when restricted to V n ( U × U) 

has the expression 

(2.14) = (A0::0,/:0> = (Ao/.,/=>. 

(::0,/:0> 

This is the formula introduced by Berezin. 

When M is compact the space 7~ of holomorphic sections of /, is finite dimen- 

sional; all linear operators on 7~ are finite rank, bounded, and are linear combinations of 

operators of rank one. The symbol of such an operator is easily determined; let u, v E 

and let: 

(2.15) A s  = (s, u)v,  s E 7~. 

Its symbol A(x)  has the expression: 

(2.16) .4(x) = h( v( x) , u( x) ) 
Iql211eqll 2 

and one checks that the denominator is a well defined function on M. 

3. THE FUNCTION 0 

The function 0 on M : 

(3.1) O(x) = lql211eqll 2 q E I, 0 and 7r(q) = x 

has been introduced in [7] where it was denoted by e and plays a crucial role in this 

theory. 
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In terms of  a holomorphic local trivialization s o : U --, L o we have: 

x E U .  

0 
" "He'°(z) tl2 = Iso(Z)12 (3.2) 

and then the coherent states can be determined by analytical extension. Indeed on U : 

and (e,0(z), e,o(v)) is holomorphic in y, antiholomorphic in x on U x U and thus, as 

previously stated, uniquely determined by its restriction to the diagonal: I le,0(z [I 2- 

Assume M is compact  and let {si; i <_ N}  be an orthonormal basis of  7/. Then 

O( z) = 

N 

h(s,(x), si(x)) 
i=l 

Indeed if s E 7-/ and if q E Lo and ~r(q) = x : 

8(=) = 
N N 

i= 1 i= 1 

N 

(8 ,  5, ,8,>q 
i=l 

if  8i(x)  = Xiq" Hence eq = ~ 1  "~&i and: 

N N 

= Iql211e, II 2 -- Iql 2 Ix,I 2 = 
i=1 i=1 

EXAMPLE 1. When M is a homogeneous space, and L a homogeneous line bundle 

over  M,  this function O is a constant. More generally if  ~o is a symplectic diffeomoro 

phism of  ( M ,  to), stabilizing the polarization F and if ~ is an automorphism of the 

quantization bundle which lifts ~o, one knows (cf. 2.4) that ~eq = eCq : furthermore ~b 

acts unitarily on 7"/ and thus ~*0 = 0. 

EXAMPLE 2. It has been shown in [6] that 0 is not a constant for the Kiihler polarization 

of  the Kepler manifold. 

In particular when 0 is constant 
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EXAMPLE 3. The complex torus T = ~ is a compact homogeneous symplectic mani- 

fold which is integral if p( F ,  F ) E Z where p is the linear symplectic structure on C" 

inducing the symplectic form to on T. There is an action of F on the trivial bundle 7_, 

on IE" such that the quotient /, is a holomorphic line bundle over T with ( h e m  class 

[~].  For this bundle L, 0 can not be constant since locally /, and I, are isomorphic; 
hence formula (3.2) would imply that they have the same coherent states and those of 7., 
are not F-periodic. 

Assume M compact and let A be a linear operator on h~, then if (sl; i <_ N}  is 
an orthonormal basisi of h~ : 

=" 
TrA = E ( A s i ,  si) = h((Asi (z) , s i (x) )  ~. 

i i M 

- f (Ass,e)h(q, to* 
i M 

to" = ~ h(q, (A*~,,s,)8,(~)) -~. 
I 

to" 
(3.2) = ~ .  h(q, (A* e,, sl)(si, eq)q) -~. 

to" 
= h(q, (A*eq, eq)q) -~. 

fu to" = Iql2~(x)ll~qll = 

to" 
= a ( ~ )  0(~)  n'T 

In particular if A = I ,  one gets: 

to" 
(3.3) d i m ~ =  0(z) n-i-." 

If L is homogeneous one gets: 

(3.4) 0 = dim ~ / v o l  M. 

From the Riemann-Roch-Hirzebruch formula [3] and Kodaira's vanishing theorem one 

gets. 

THEOREM. The integral of 8 is a topological invatiant when the quantization bundle is 
suf~cien@ positive. • 
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The condition that 8 is a constant is necessary and sufficient for the geometric quan- 

tization construction to be ((projectively induced~> [7]. We assume ( M ,  to, F)  to be 

a compact K~tler manifold and we denote by (L,  V, h) a quantization bundle; let 

{si; i < N} be an orthonormal basis of H (= space of holomorphic sections of L). 

We.assume that for any z in M there exists a holomorphic section s(eTO which does 

not vanish at x. 

Let p : H*\{0  } ~ P(T{*) (= projective space of 7~*) be the canonical projection; 

wedefineKodaira 'smap ~o : M --4 P(7-l*) : x ~ p [ s  ~ lq(s)] where s • 7-/,q • L ° 

and lq(s)q  = s ( z ) .  A family of charts V i : i < N)  on P(7-l*) is characterized by: 

Vi:{p(v)lvE?/*\{0} and v(s,)#0}. 

The local complex coordinates on V i are: 

v(%)'  

Introduce the functions 

(] < N, ]# i). 

l~. (z)  = t,,(=) ( s j) .  

These are defined and holomorphic on the open set U i = {z 6 M l s i ( z ) # O }  as 

sS(x) = / j , ( z ) s i ( z ) .  if  s = ~ cksk: 
k<_N 

k<N 

where {8i.; i _< N} is the dual basis of 7-/*. This shows that 99 is a holomorphic map. 

Let a : K* --* P(7"/*) be the dual of the canonical line bundle on P(H'); let 

K~ = K*\{zero section}. The line bundle K* is associated to the principal f* bundle 

p : H*\{0} --* P(H*) (i.e. K* = H*\{0} ×p (r where p denotes the actionof E* 

on ~ defined by p(/z)z = #-Iz). 

One identifies K~ with H*\{0  } as follows: an element of K~ is an equivalence 

class [u , z ]  (where u 6 H*\{0}  and z E ¢*; recallthat [u , z ]  = [ u # , # z ]  forany 

# E •*); themap ¢ :  K~ ~ H*\{0}  is givenby: ¢ ( [ u , z ] )  = ~. The connection 

1-form/3 on 7t*\{0 } is defined by: 

ilvl12 e n * \ { o ) ;  • n* 

A vector tangent to H*\{0  } is viewed as an element of H* and the hermitian structure 

on H* is induced by the Hilbert structure on H (i.e. if a : 7 / ~  7~* is the semi linear 
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map ( t~(z) ) (y)  = (y, z) one defines ( a (v l )  , ol(v2) ) = (vl, v2); this scalar product 
is semi linear in the first factor and linear in the second). The hermitian form h on K* 

is defined by: 

z$ 
h([u,z],[u,z]) = lulP u ~ ' \ { 0 } , z  e ¢ 

where Ilull 2 denotes the square of the norm in ~ * \ { 0 } .  

This hermitian structure is invariant by the connection. Indeed i f a  i : V i ---, ~ * \ { 0  } : 

p(v)  4..4 ~ is a local section of ~ * \ { 0 }  and ?r i : V i ---, K* : p ( v )  ~ [ a i ( p ( v ) ) , l ]  

is the corresponding section of K* one sees that: 

( w( si) (Vp.,~r,),,,, = \ ~  ~(w))~ri(p(v)) 
and as hg~)(~ri(p(v)), Oi(p(v)) = ~ ,  invariance is checked by straight-forward 
calculation. 

Observe that ~r i is a holomorphic section of K* and that /~ is a 1-form of type 

(1 ,0)  which reads: 

~ = O(log Ilvll 2) 

The curvature form f~ of 7~*\(0)  is of the form: 

f l  = - 2  wip* w o 

where w 0 is a real symplectic 2 -form on P ( ~ * )  invariant by the natural action of the 
unitary group on projective space. 

The above shows that ( K*, V, h) is a quantization on the K~ihler manifold ( P ( ~ * ) ,  w0) 

Let ~ : L 0 ~ K~ : q ~ I¢; this map is holomorphic and a homomorphism of 

principal ~* bundle; it projects onto the Kodaira map ~o : M ~ P ( ~ * )  : x = 

lr(q) --.. trlq. The map ¢ :  K~ --, ~ * \ { 0 }  : [u ,z]  ~ u / z  projects onto the identity 

map of ~ * \ { 0 } .  It has the property that ¢ ( [ u , z ] c )  = ¢ ( [ u , z ] )  ~(c  ~ E*) and 

hence if $* is a fundamental vector field associated to the action of 112" on K~, it is 

mapped by ¢ ,  on -~_* (= fundamental vector field associated to the action of IE* on 

~ * \ { 0 } .  This implies in particular that -¢*/~ is a connection 1-form on K~; it is 

the one inducing V. 

The 1-form c~ + ~*~b*3 (where t~ is the connection 1-form on L0) is IE* in- 

variant and vanishes on the fibres of L 0 . Hence there exists a complex valued 1-form 

9 on M such that: 
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This form is of  type (1, 0). Indeed if U is an open set in M and if 8 o : U ~ L 0 is a 

holomorphic section, then: 

~/= (1to s0)*7 = s ~ +  ( 4  o @ o 8o)*P 

and the 1-forms on the right hand side am of type (1, 0). 

Using the formula (1.10) one has: 

% = (s~c~)= + (qJ o ~ o %)*/~= = ( 0 l o g  1%12 + 0 log  Iltsoll2)= 
= ( 0 log [s o 12 Ills0 II 2)= = ( 0 %  

I f  0 is a constant function, this constant is necessarily strictly positive as: 

N 

o(z) = ~ h( 8i(z), 8i(z))  
i=1 

and thus for any ~: in M ,  there exists a holomorphic section which does not vanish at 

fl;. 

Hence the: 

PROPOSITION. Let ( L , h , V )  be a quantization o f  the compact K~Ier  manifold 

( M,  oJ,F) such that the function O is constant; let 7~ be the space o f  holomorphic 

sections o f  L and let ~ : M -4 P(TC) be Kodaira's map. Then the pull back o f  

the dual o f  the canonical bundle over projective spaces, with the usual connection and 

hermitian structure defines a quantization over M isomorplu'c to the original one. 

4. G E O M E T R I C  QUANTIZATION AND BEREZIN'S  QUANTIZATION 

We compare geometric quantization and Berezin's procedure as formulated in § 2.  

We show when O is a constant that the space of symbols contains the space E ofquan- 

tizable functions. Furthermore we prove that the space of symbols increases with the 

Chem class of  the bundle when all corresponding 0's are constant and that the limit is 

derige in the space of smooth functions on M. 

PROPOSITION 1. Let  ~o be a quantizable function on the K~hler manifold ( M, to, F)  ; 

let Q( ~) be th~oonesponding quantum operator on 7~. Then its symbol Q( ~) is 

~,~n by: 

t Q(~):  = X~o(Lr~) - 2 ~ri~o 

wlmm X ~  i~ the F-component o f  the vector t~eld Xv.  In particularif 8 is aconstant, 

the symbol oF ~ is proportional ta ~. 
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P r o o £  Let ~o be a quantizable function and let X~ be the corresponding hamihonian 
vector field. Write X~, = X~o + X~, where X~, (resp. X~) belongs to F (resp. F) ;  
the condition [ X, X, ]  belongs to F for any X in F is equivalent to saying that X~o 
is a holomorphic vector field. 

If s o : U ~ L 0 is a holomorphic section and f : U ~ IE is a holomorphic 
function 

Q(~Oo) f = x~o f + ( 8~a)(x~o) f - 2~i~of = 

= x~: + (4~)(x~)y - 2 ~/~oI. 

As ( Q ( ~O))o f is holomorphic ( ~o is a quantizable function) one secs that 8~ a(X~) - 

2 Iri~o is a holomorphic function. Using the same notation as in (2.9, 2.13, 2.14): 

((Q(~O))of,,f~)~, = (Q(~Oo)f,(z) 

= + - 

Observe that f~(x) is antiholomorphic in ~ and thus: 

(x~,fs,)(x) lv= = = ( x~ ,9 ) (z ) .  g (x )  = .f=(=) = k ( x , z )  

Also: 

o(~.) 
:= (=)  = (:=, :=),, = (%c=) ,  ~,o(=~) = I~0(=)12.  

Thus: 

x,~(e) (=)  e(z)  . . , . ,  ,2. 
(x~ j . . ) (~ : )  = 180(:~)12 i,o--~-ff.%t:o, 

x~(o)(=) . ~  
- l%(z)l 2 o, , 2(°/nls°12)(x~') 

I~o(z) l  2 o, , 

Substituting: 

x;(o) 
((Q(~))of~, f~). - l,o(z)l 2 

and 
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The space of symbols is a finite dimensional subspace of the space of smooth func- 

tions on M (we assume M compact in all that follows). 

If  ( L , V , h )  is a quantization of the KElaler manifold ( M , w , F ) ,  (L  k = ®k 
I,, V k, h k) is a quantization of the K ~ l e r  manifold (M,  kto, F )  for any integer k. 

The connection V k is defined by using Leibniz's rule and the hermitian structure h k is 

given by: 

£ k k h ( % , % )  = In0[ 2k n 0 = local secfionof L. 

Let us denote by 7{ (k) the space ofholomorphic sections of L k and by E ( L  k) the 

space of symbols; let 0 (k) be the function on M associated to 7{ (k) . 

PROPOSITION. Let ( L , V , h )  be a quantization o f  the compact Kiihler manifold 
( M, to, F) .  I f  all functions O(k) are  constant, then the space E ( L k )  is contained in 
E(  L k+ I ) for all integers k. 

Proof. The space /~(L ~) is spanned by symbols of operators of rank 1 on ~(k) thus 

by 

{h (k) (v (~) , u (k))/0 (k) Iv (k) , u (k) E 7{ (k) }.  

Recall that if {hi; i < N} is an orthonormal basis of ?~ : 

= Ile, ll21ql 2 = In,( )l 2.  
i 

One then observes that: 

Thus: 

~k 1 
0 ) h(k)(v(k)'u(k))O = E h ( k ) ( v ( k ) ' u ( k ) ) h ( s i ' s i )  0 (k) 

i 

1 
= E h ( k + D ( v  (k) I9 si, u (k) 19 s i) 0(k). 

i 

O0 Ck) 
OCk+1) /~(L k C/~(L ok+l)) 

and hence the conclusion when all 0 (~) 's are constant. ', 

In view of this nesting property, it is natural to consider the limit C L = ~ /~(Lk). 
k=l 
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THEOREM. Let ( L, V,  h) be a quantization o f  the compact K~der manifold ( M, w, F) 
such that, for each integer, k, the function 8 (k) is a constanL Then C L is a dense 
subalgebra o f  C~( M) . 

• Proof. The space E ( L  k) is spanned by functions of the form h(k)(s,t) where s and 

t belongto ~(k); if u,v 6 ~  (~ onehas: 

h(k)(s,t)h(O(u, v) = hh+t(s ® u,t  ® v) 

and thus: 

~(L(~)) /~(L l) C J~( L k+') 

The function 1 is the symbol of the identity operator on ~ and dearly C L is stable by 

conjugation. Thus by Stone-Weierstrass, the theorem is proven provided the functions 

in C z separate points of M. 
By Kodaira's embedding theorem, as L is a positive line bundle there exists an in- 

teger k such that the map: 

_.  p ( u ( ~ ) . )  : ~ = ~(k)(q) _ ,  p [~ _ .  l , (~)]  

where q 6 L (k) , s 6 7/¢~) and p : H(k)*\{0} ---) p(~¢k) . )  is the canonical projec- 

tion on projective space, is an embedding. Assume E ( L  k) does not separate points of 

M; then there exist x#  y in M such that A(z )  = A(y)  for any A 6 ~?(L~). Let 
A = hf~)(eq,S) where s 6 ~(k) and q 6 L (k). Then 

h c k) (e~(x).  6(x)) = h ¢ k) (ev(v).  s(V)) 

for any choice of q and s. If q~ (resp. q~) belongs to L ° (resp. L °) 

(eq. e,.)  h c ~) ( %. 6(z)  ) = (% e~.) h c k) ( %. 6(V)) 

hence: 

h(k)(s(z) ,  q~)e~, = h(k)(s(y),  qv) e~, 

for any choice of s. As one has a projective embedding, there exists 8 such that s (z )  # 0; 

but then e~, is proportional to e% and the map into projective space is not injective. Thus 

we have a contradiction and/~( L k) must separate points. • 
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